SynPo-Net—Accurate and Fast CNN-Based 6DoF Object Pose Estimation Using Synthetic Training
نویسندگان
چکیده
منابع مشابه
Human Pose Estimation from RGB Input Using Synthetic Training Data
We address the problem of estimating the pose of humans using RGB image input. More specifically, we are using a random forest classifier to classify pixels into joint-based body part categories, much similar to the famous Kinect pose estimator [11], [12]. However, we are using pure RGB input, i.e. no depth. Since the random forest requires a large number of training examples, we are using comp...
متن کاملHuman Pose Estimation in Space and Time Using 3D CNN
This paper explores the capabilities of convolutional neural networks to deal with a task that is easily manageable for humans: perceiving 3D pose of a human body from varying angles. However, in our approach, we are restricted to using a monocular vision system. For this purpose, we apply a convolutional neural network approach on RGB videos and extend it to three dimensional convolutions. Thi...
متن کاملObject Tracking and Pose Estimation Using Light-Field Object Models
Geometric object models have been widely used for visual object tracking. In this contribution we present particle filter based object tracking with pose estimation using an appearance based lightfield object model. A light-field is an image-based object representation which can be used to render a photo realistic view of an arbitrarily shaped object from arbitrary viewpoints. It is shown how l...
متن کاملSummarizing Image/Surface Registration for 6DOF Robot/Camera Pose Estimation
In recent years, 6 Degrees Of Freedom (DOF) Pose Estimation and 3D Mapping is becoming more important not only in the robotics community for applications such as robot navigation but also in computer vision for the registration of large surfaces such as buildings and statues. In both situations, the robot/camera position and orientation must be estimated in order to be used for further alignmen...
متن کاملFull 6DOF Pose Estimation from Geo-Located Images
Estimating the external calibration – the pose – of a camera with respect to its environment is a fundamental task in Computer Vision (CV). In this paper, we propose a novel method for estimating the unknown 6DOF pose of a camera with known intrinsic parameters from epipolar geometry only. For a set of geo-located reference images, we assume the camera position but not the orientation to be kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2021
ISSN: 1424-8220
DOI: 10.3390/s21010300